Introduction to Corrosion: 1.1 Corrosion: Definition and Examples 1.2 Basic Concepts in Electrochemistry 1.3 WhyDo Metals Corrode 1.4 Kinetics: The Rate of Corrosion 1.5 How Do Metals Corrode: Different Forms of Corrosion 1.6 General Methods for Corrosion Control
General Damage Mechanisms – All Industries Including Refining and Petrochemical, Pulp and Paper, and Fossil Utility
4.1 General
4.2 Mechanical and Metallurgical Failure Mechanisms
4.2.1 Graphitization
4.2.2 Softening (Spheroidization)
4.2.3 Temper Embrittlement
4.2.4 Strain Aging 4.2.5 885oF Embrittlement
4.2.6 Sigma Phase Embrittlement
4.2.7 Brittle Fracture
4.2.8 Creep / Stress Rupture
4.2.9 Thermal Fatigue
4.2.10 Short-Term Overheating – Stress Rupture
4.2.11 Steam Blanketing
4.2.12 Dissimilar Metal Weld (DMW) Cracking
4.2.13 Thermal Shock
4.2.14 Erosion / Erosion-Corrosion
4.2.15 Cavitation
4.2.16 Mechanical Fatigue
4.2.17 Vibration-Induced Fatigue
4.2.18 Refractory Degradation
4.2.19 Reheat Cracking
4.2.20 Gaseous Oxygen-Enhanced Ignition and Combustion
4.1 Uniform or Localized Loss of Thickness
4.1.1 Galvanic Corrosion
4.1.2 Atmospheric Corrosion
4.1.3 Corrosion Under Insulation (CUI)
4.1.4 Cooling Water Corrosion
4.1.5 Boiler Water Condensate Corrosion
4.1.6 CO2 Corrosion
4.1.7 Flue Gas Dew Point Corrosion
4.1.8 Microbiologically Induced Corrosion (MIC)
4.1.9 Soil Corrosion
4.1.10Caustic Corrosion
4.1.11Dealloying
4.1.12Graphitic Corrosion
4.2 High-Temperature Corrosion [400oF (204oC)]
4.2.1 Oxidation
4.2.2 Sulfidation
4.2.3 Carburization
4.2.4 Decarburization
4.2.5 Metal Dusting
4.2.6 Fuel Ash Corrosion
4.2.7 Nitriding
4.3 Environment – Assisted Cracking
4.3.1 Chloride Stress Corrosion Cracking (CI–SCC)
4.3.2 Corrosion Fatigue
4.3.3 Caustic Stress Corrosion Cracking (Caustic Embrittlement)
4.3.4 Ammonia Stress Corrosion Cracking
4.3.5 Liquid Metal Embrittlement (LME)
4.3.6 Hydrogen Embrittlement (HE)
4.3.7 Ethanol Stress Corrosion Cracking (SCC)
4.3.8 Sulfate Stress Corrosion Cracking
Refining Industry Damage Mechanisms
5.1 General
5.1.1 Uniform or Localized Loss in Thickness Phenomena
5.1.1.1 Amine Corrosion
5.1.1.2 Ammonium Bisulfide Corrosion (Alkaline Sour Water)
5.1.1.3 Ammonium Chloride Corrosion
5.1.1.4 Hydrochloric Acid (HCl) Corrosion
5.1.1.5 High Temperature H2/H2S Corrosion
5.1.1.6 Hydrofluoric (HF) Acid Corrosion
5.1.1.7 Naphthenic Acid Corrosion (NAC)
5.1.1.8 Phenol (Carbonic Acid) Corrosion
5.1.1.9 Phosphoric Acid Corrosion
5.1.1.11 Sulfuric Acid Corrosion
5.1.1.12 AqueousOrganic Acid Corrosion
5.1.2 Environment–Assisted Cracking
5.1.2.1 Polythionic Acid Stress Corrosion Cracking (PASCC)
5.1.2.2 Amine Stress Corrosion Cracking
5.1.2.3 Wet H2S Damage (Blistering / HIC / SOHIC / SCC)
5.1.2.4 Hydrogen Stress Cracking – HF
5.1.2.5 Carbonate Stress Corrosion Cracking (ACSCC)
5.1.3 Other Mechanisms
5.1.3.1 High Temperature Hydrogen Attack (HTHA)
5.1.3.2 Titanium Hydriding
5.2 Process Unit PFD’s
5.2.1 CrudeUnit / Vacuum
5.2.2 Delayed Coker
5.2.3 Fluid Catalytic Cracking
5.2.4 FCC Light Ends Recovery
5.2.5 Catalytic Reforming – CCR
5.2.6 Catalytic Reforming – Fixed Bed
5.2.7 Hydroprocessing Units – Hydrotreating, Hydrocracking
5.2.8 Sulfuric Acid Alkylation
5.2.9 HF Alkylation
5.2.10 Amine Treating